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Abstract

An often-ignored aspect of unmanned cross-country
vehicles is the dynamic response of the vehicle on differ-
ent terrain. We discuss techniques to predict the dynamic
vehicle response to various natural obstacles. This
method can then be used to adjust the vehicle dynamics
to optimize performance (e.g. speed) while ensuring that
the vehicle is not damaged. This capability opens up a
new area of obstacle negotiation for UGVs, where the
vehicle moves over certain obstacles, rather than avoid-
ing them, thereby resulting in more effective achievement
of objectives.  Robust obstacle negotiation and vehicle
dynamics prediction requires several key technologies
that will be discussed in this paper. We detect and seg-
ment (label) obstacles using a novel 3D obstacle algo-
rithm. The material of each labelled obstacle (rock,
vegetation, etc.) is then determined using a texture or
color classification scheme. Terrain load-bearing surface
models are then constructed using vertical springs to
model the compressibility and traversability of each ob-
stacle in front of the vehicle. The terrain model is then
combined with the vehicle suspension model to yield an
estimate of the maximum safe velocity, and predict the
vehicle dynamics as the vehicle follows a path. This end-
to-end obstacle negotiation system is envisioned to be
useful in optimized path planning and vehicle navigation
in terrain conditions cluttered with vegetation, bushes,
rocks, etc. Results on natural terrain with various natural
materials are presented.

Keywords:  Classification, geometrical reasoning,
navigation, obstacle detection obstacle negotiation,
terrain perception, terrain modeling, vehicle modeling.

1. Introduction
Driving in cross-country vegetated environments re-

quires a higher level of scene understanding and vehicle
control than in arid terrain or static urban environments.
In the latter cases the trafficability of a given path is de-
termined solely by the presence or the absence of obsta-

cles that may hamper the vehicle’s moving. Obstacles
should be avoided when they are tall enough to harm the
vehicle (such as a wall, a telephone pole or a big rock),
or, if they are of small dimension, they may be driven

over at low speed. The underlying assumption in these
kinds of environments is that all materials in the scene
are uncompressible. Thus, the "load-bearing surface"
along a path corresponds to the actual visible surface,
meaning that geometry description (as acquired by range
sensors such as stereo cameras or lidars) provides enough
perceptual information to control the vehicle, that is, to
decide the most appropriate path and optimal velocity.

In contrast, objects or surfaces composed by vegetative
material are often rather compressible. Think for example
of a thin bush (see Figure 1) or a tuft of tall grass: such
"obstacles" are indeed traversable by a suitably sized
vehicle, even when their height is such that they would
harm the vehicle were they made of "hard" material (such
as rock, concrete or wood.) A system unaware of the
compressibility properties of such materials would avoid
all such "obstacles", resulting in unnecessary tortuous
and inefficient paths. An extreme case is given by a field
of tall grass, where the vehicle is faced with a continuum
of apparent obstacles. Thus, traditional sensing and con-
trol mechanisms should be revisited for autonomous
navigation in vegetated terrain, where obstacle negotia-
tion is an important and complex component of the
problem.

This paper presents a combined approach to obstacle
negotiation, comprising the operations of obstacle detec-

Figure 1: Example of natural terrain that re-
quires obstacle negotiation



tion, terrain cover classification and compressibility
characterization, and dynamic vehicle modeling (see Fig-
ure 2). Each module in Figure 2 provides information
that is used for the characterization of vehicle dynamics
over the terrain. The obstacle detector provides 3D
shape/geometrical information about each obstacle.
Texture and color reasoning combined with the 3D geo-
metrical information provide information about the mate-
rial class of each obstacle. This shape and material in-
formation is then used by the vehicle velocity control
module (green block in Figure 2).

We introduce a simple spring/damper model for repre-
senting the reactive characteristics of an obstacle. If the
obstacle is made of uncompressible material (e.g., a
rock), then the spring constant is infinite; otherwise, it is
assigned a finite value depending on the material. The
vertical acceleration of the vehicle as it traverses a candi-
date path at a given velocity is predicted by considering
the height profile of the path, the dynamic characteristics

of the vehicle (modeled by a spring/damper parallel), and
the reactive characteristics of obstacles along the path.
This predicted acceleration profile is at the basis of our
obstacle negotiation strategy, allowing us to determine
the "optimal" velocity for the traversal, that is, the maxi-
mum velocity such that the peak vertical acceleration is
below a preassigned value.
The paper is organized as follows: Our obstacle detection
and segmentation algorithm is discussed in Section 2.
Section 3 details our obstacle reasoning algorithms, in-
cluding geometrical shape-based reasoning (Section 3.1),
terrain material classification using texture (Section 3.2)
and color classifiers (Section 3.3). In Section 4, we dis-
cuss our loadbearing surface modelling technique for
prediction of vehicle dynamics as it negotiates detected
obstacles. Results are presented in Section 5.

2. Obstacle characterisation algorithm

2.1. Obstacle detection
Obstacle detection is one of the main requirements of

mobile robots. Positive obstacles correspond to objects
that project upwards from the ground, such as bushes,

trees, grass, poles, road signs, etc. Detection of positive
obstacles have previously involved fitting of ground
planes to 3D elevation maps, and classifying all groups
of pixels above the ground plane as obstacles, or using
slope measures along columns in the range image [Bel-
lutta00] to locate obstacles, followed by 2D blob colour-
ing to remove small obstacles.

The plane fitting technique fails when the scene has
elevation variations, which occurs frequently in natural
terrain. The column-wise scanning technique works well
when obstacles are vertically oriented, but fails for
slanted sloped objects.

We develop a true 3D obstacle detector that searches
for surrounding pixels in 3D space that satisfy the slope
and height criteria at each valid pixel location. We use
efficient techniques for doing such searches in the 2D
range-elevation image data available to us.  Details of our
obstacle detector are provided in [Talukder02].

2.2. Obstacle segmentation
Obstacle segmentation for mobile robotics have mostly

used 2D blob-based measures to reduce false obstacle
detection [Bellutta00]. This is inadequate when obstacles
that are separated in depth in 3D space are adjacent in 2D
image space due to overlap in their x,y coordinates.

Our 3D obstacle detection algorithm using searches in
3D space inherently does obstacle segmentation as a by-
product. We [Talukder02] color valid obstacle pixels as
we proceed along the range-elevation map in row-scan
order, and recolor those that are sufficiently close in 3D
space. This results in a truly 3D segmented obstacle im-
age, where obstacles that are spatially adjacent in x,y (2D
image space)  are assigned different labels if they are far
away in depth. The obstacle segmentation algorithm is
detailed in [Talukder02].

3. Obstacle Reasoning
Obstacle material reasoning provide useful information

for the terrain modelling and path planning algorithms.
Robust obstacle reasoning should be able to (1) prune
false obstacles, and  (2) provide adequate information to
model the response of each obstacle to vehicle dynamics.
We use three disparate obstacle reasoning methods, each
of which provides unique (and complementary) informa-
tion about each obstacle. We use geometrical 3D obstacle
information from the obstacle detector, and material clas-
sification using texture and color information. We then
fuse the information from these modules that yields more
robust obstacle pruning and material reasoning results
than each individual method.

3.1. Geometrical and Shape-based Reasoning
Prior 3-D model-based reasoning for robotics

[Hoover98] typically require converting the 3-D point
data into a mesh representation, which is a complex op-
eration. We compute 3-D geometrical features from the
raw point-cloud data, which enables real-time analysis.
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Figure 2: The modules in our terrain negotiation
procedure. Shaded/color portions show the modules
discussed  in this paper for obstacle negotiation.



We extract simple 3-D geometrical measures from each
obstacle, including the 3D perimeter, and aver-
age/maximum obstacle slope & relative height. These
geometrical measures are automatically derived during
the obstacle segmentation process, without any extra
computational overhead. If any of the five variables have
a value less than the pre-selected thresholds (i.e. object is
too small, low average.maximum slope, etc.), it is re-
jected as a false obstacle. Figure 5a shows examples of
false-objects (flat areas) that are correctly rejected (red
coloured areas) after obstacle reasoning.

3.2. Texture-based Material Classification
Visual texture can provide valuable information about

the identity of imaged objects.  Obstacles within a class,
such as bushes, often have similar texture signatures and
thus, when combined with obstacle detection, texture can
be used to discriminate among several classes of obsta-
cles.  Texture can perform well in cases where color clas-
sification is ineffective or not possible.  For example, it
works well on infrared images taken at night.  Further-
more, there are classes of materials such as dry vegeta-
tion, bark, and soil that are difficult to distinguish with
color but can be readily distinguished using texture.

Texture measures the local intensity variation at differ-
ent orientations and spatial frequencies.  Local texture
features condense information from a small neighbor-
hood of a given pixel.  Our features are obtained by con-
volving each filter in a multiscale, multioriented Gabor
filter bank with the original image.  Such feature opera-
tors have proven to be effective and have become a stan-
dard choice in most of the recent texture analysis algo-
rithms in the literature.  With the extracted features, we
use a classifier to label the image pixels.  The classifier
models the probability distribution function of the texture
features for each obstacle class as a mixture of three
Gaussians, and performs a Maximum Likelihood  (ML)
classification.  The Expectation-Maximization (EM) al-
gorithm is used to train each class of the classifier.  The
classification method is detailed in [Castano 2001].

3.3. Color-based Material Classification
Color features are attractive because they provide useful
information about terrain type and produce classification
results with small computational cost. We used the Baye-
sian color classifier that we developed for the DEMO III
project [Shoemaker98], which uses Gaussian mixtures to
model the classconditional color likelihoods.
Our system uses three terrain surface classes: "green
vegetation", "dry vegetation",  and "soil/rock". A fourth
default class ("outlier") accounts for surfaces  whose ap-
parent color is not well represented by any of such three
classes.  Green vegetation and dry vegetation are typi-
cally well separable in color space. One reason to keep
these two classes separated (rather than having a com-
mon "vegetation" class) is that the dry vegetation class
includes bark and therefore tree trunks, which are usually

not traversable. Green vegetation, instead, typically in-
cludes only grass, bushes and leaves. Figure 3 shows
color classification results on natural terrain. Note that in
some instances it may be very difficult to separate bark
from other kinds of dry vegetation, or dry vegetation
from  some types  of soil, based solely on color [Rob-
erts93]. Discrimination can be improved  in these cases
by fusing color information with evidence from other
visual features (such as texture and shape analysis.)
The measured radiance spectrum is a function of the il-
luminant spectrum and surface reflectance. To correct for
changes in the sunlight spectrum, standard white point
calibration procedures (often implemented in hardware
onboard the camera) may be used. Note however that it is
not possible in principle to correct for both sunlight and
diffuse ambient light at the same time, due to their differ-
ent spectral characteristics. Our current approach to the

problem is to correct for the sunlight spectrum using a
white reference, and to deal with other variations of the
illuminant using a rich enough statistical model trained
with a large and possibly diversified set of training data.

4. Terrain Load Bearing Surface Modeling for
Vehicle Dynamics

One important desired feature in UGVs is the ability to
know which obstacles to avoid, the intelligence to slow
down when hard “uncompressible” obstacles are detected
and continue driving normally when traversable (“com-
pressible”) objects such as tall grass or thin bushes are
encountered. The modules discussed so far provide in-
formation about the location, shape and size of each ob-
stacle, and the material or class of each obstacle (stone,
vegetation, etc.) This information can be used to estimate
the “compressibility” of each object in the scene. We use
springs to model terrain compressibility of each obstacle.
The vehicle dynamic suspension is also modelled using
another spring, which is based on work done previously
at JPL [Rankin98]. Our work is an improvement to that
suggested in [Rankin98] in that it considers terrain com-
pressibility, a critical issue in obstacle negotiation.

                                                          
1 Outliers are detected by thresholding the likelihood of
the color of each pixel according to our model [Ri-
pley96].

  
Figure 3. Original & Color-based classification

(from [Bellutta00] (brown = soil; yellow = dry vege-
tation; green = green vegetation; red = outlier). Pixels
further than 50 m have not been classified



Therefore, as shown in Figure 4, we view the vehicle
and its load-bearing surface as a mass-spring system,
where the quarter-model of the vehicle (one wheel in a
four-wheeled vehicle) and terrain are each modelled as
springs, each with its own spring parameters. We assume
that the spring constant KO of each terrain obstacle class
is unique and known a-priori (our initial tests indicate the
feasibility of using learning to improve the spring models
online, but is not discussed here due to space con-
straints). KO is a function of the obstacle material (de-
scribed mathematically by the material’s shear/elastic
modulus), and the height of the obstacle. Stone/rocks and
logs have large shear/elastic modulus), tall grass has low
shear/elastic modulus, and bushes have a medium
modulus. For a given obstacle of known material (and
known shear/elastic modulus), we assume that the spring
constant is proportional to its height, similar to spring
coil models, i.e. the taller an obstacle, the larger is its
spring constant KO. Note that the obstacle height is ob-
tained automatically from our obstacle segmentation
routine, and therefore a separate ground-plane fitting
algorithm is not required for height estimation.

In order to limit the forces that the vehicle is subjected
to while driving over terrain, we derive a relation be-
tween the vehicle’s velocity and the vertical acceleration.

The model shown in Fig. 4 can be used to approximate
the dynamic motion of a quarter vehicle suspension sys-
tem over various terrain types, where TzzCKM and,,,,
are the quarter vehicle mass, the effective suspension
spring constant of the vehicle and terrain class in front,
the effective suspension damping, and the displacements
from equilibrium of the mass M and tire axle. The
equation describing the motion of this system is
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The effective spring constant K of two springs in series
(vehicle and obstacle) with each other are equivalent to
two resistors in parallel, i.e. 1/K = 1/KV + 1/KO. There-
fore, the presence of a vegetation obstacle would lower
the effective spring constant, and stone obstacles would
result in larger effective spring constants. For current
purposes, we assume that the spring damping coefficient
is the same for all objects and the vehicle suspension.

For this effective spring-mass system, we now derive
our velocity and acceleration prediction techniques for a
case where only one obstacle of a known material type is
present in front of the vehicle. We shall later generalize
this to the case where several obstacles of different mate-
rial types are present in the scene. It is clear from equa-
tion 1 that if the relative displacement and its derivative
are known, the vertical acceleration of the vehicle can be
computed. For a given vehicle and a single obstacle with
known material class, equation (1) simplifies to

where the relative displacement, r, and the road height,
h, are given by TT zhzzr −=−= , .

We use exactly the approach used in [Rankin98] to
solve for the dynamic control problem, for a given obsta-
cle material type (and therefore a known effective spring
constant for the vehicle-obstacle spring system). Only the
outline of the derivation is provided, and the reader is
referred to [Rankin98] for details. Using
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Ignoring initial conditions for now (we will discuss
them later), we change the dependent variable to distance
(since the data is available as a range/elevation map),
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After simplification [Rankin98], we can write the vertical
vehicle acceleration as,
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slope and its double derivative. To avoid damaging the
vehicle, we ensure that the vertical acceleration is bound-
ed and choose vehicle velocity U such that
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Figure 4: Terrain-vehicle spring model system for
vehicle velocity control
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For a single obstacle in front of the vehicle, Eq. (3) is
used to predict the acceleration of the vehicle when the
material class, and therefore the spring model parameters
of the obstacle is known, and Eq. (4) yields the maximum
safe velocity when the vehicle traverses the obstacle. In
practice, we model the elevation map along the path fol-
lowed by the vehicle as cubic-splines to accommodate
missing data points in the range/elevation map directly in
front of the vehicle.

For the case when several obstacles are present in front
of the vehicle, we divide the traversal path into segments,
corresponding to non-obstacle segments, and obstacle
segments. For N obstacles in front the vehicle, the tra-
versal path is therefore divided into (2N + 1) segments.
We apply the velocity control and acceleration prediction
algorithms on each segment with its own spring model
parameters; for e.g, the effective  spring constant for
solid ground/soil segments is K = KV (since KO =
infinity).

An issue that arises in modeling the system dynamics
are the initial conditions of the system  x0 = [r  dr/dt].
When the vehicle starts from a stationary state, the initial
conditions (Eq. 2) can be assumed to be zero. For a case
where N obstacles are present, we assume that the initial
conditions at the beginning of each of the (2N + 1) seg-
ments is x0 = [0   0]. This is a reasonable assumption for
the n’th segment of the vehicle’s path, if the vehicle zero
vertical velocity at the end of the (n-1)’th segment. This
holds true if the terrain at the end of the (n-1)’th segment
has relatively low elevation changes. This is a realistic
assumption since the beginning and end of each obstacle
or non-obstacle segment is generally flat/gently sloping.

Incorporating the true initial conditions at the begin-
ning of each of the (2N + 1) segments is, however, ex-
pected to give more accurate predictions of vehicle dy-
namics and will be implemented in future work.

5. Results
We present results of our end-to-end obstacle negotia-

tion algorithms. This includes the obstacle detector, and
obstacle labeling (Section 2), obstacle reasoning using
shape and texture classifiers (Section 3), and velocity
control and terrain modelling (Section 4).

We tested our terrain/obstacle negotiation algorithms
on terrain comprised of 4 traversible objects, namely two
logs, a bush, and a stone. Grayscale stereo cameras were
used, due to which material classification was done using
the texture classifier (Section 3.2) only. Range data was
obtained using JPL stereo algorithms. An inertial meas-
urement unit (IMU) was placed on the vehicle to measure
vehicle velocity and accelerations. These IMU measure-
ments were used to verify the accuracy of our terrain
modeling & velocity control prediction algorithms.

We used three obstacle material classes for the texture
classifier: log, bush and rock.  We trained on several im-
ages of the obstacles, using only image pixels of the ob-
stacle, and tested the classifier on the obstacles detected

in complete sequences of images.  During testing, we did
not employ an outlier detector, thus each pixel is as-
signed to one of the three obstacle classes.  The classifier
is very effective for the obstacles for which it was
trained, however the assigned label is only meaningful
for pixels representing obstacles.  Regions in the image
representing classes not used for training, such as sky or
flat ground, receive arbitrary labels. In each test image,
we computed a class label for every obstacle pixel.

We consider combined texture/color classification with
obstacle segmentation information to achieve better ob-
stacle reasoning. Prior work on Demo III [Bellutta00]
used a majority-based decision using the color classifier
on each 2D obstacle blob. In our preliminary tests, we
classify each segmented 3D obstacle using a majority
classification voting. Using true 3D segmented obstacles
is expected to yield better material classification than
texture classification on 2D obstacle blobs that may actu-
ally contain 2 or more overlapping obstacles.

Figure 5a shows a color image of a stone in front of the
vehicle, and Figure 5b shows the true obstacles (blue)
and the rejected false obstacles (red) after
shape/geometrical reasoning. Figure 5c shows the seg-
mented obstacle map with each obstacle assigned a
unique color. The texture classification results on obsta-
cles within 15 metres from the vehicle are shown in Fig.
5b, with stone regions as blue and vegetated obstacles as
green. Note that the fusion of the texture material classi-
fier and the obstacle detector results in more robust rea-

soning. The stone is classified as a valid obstacle since it
is of sufficiently height (based on geometrical reasoning)
and is classified as rock by the texture classifier. The
other two regions (green patches in Figure 6b) that are
incorrectly labeled as obstacles by the shape reasoning
procedure are correctly classified as vegetation (low

  
      (a) (b) (c)

 
(d)    (e)

Figure 5: (a) Stone obstacle (b) detected obstacles
(blue) and rejected (red) (c) Segmented obstacle image
(d)  texture classified image of obstacles within 15 metres
(blue- stone, green- vegetation) and (e) Predicted vs.
actual acceleration magnitude for stone obstacle.



grass) by the texture classifier.  Using a majority-based
decision on labeled obstacles, rather than pixel-based
classification, makes the texture material classification
performance significantly better than individual pixel-
based classification. The absolute value of the predicted
acceleration for the vehicle as it moves at a constant
speed is shown as a red line in Fig. 5d. Note that the ab-
solute acceleration value is required to assess vehicle
tolerance limits (the sign, i.e. direction of acceleration is
not needed). The absolute value of the true acceleration
of the vehicle measured from the IMU is shown as a
green plot. The sharp peak corresponds to the time that
the vehicle moves over the stone.

Figure 6 shows results as the vehicle negotiates a me-
dium-sized bush. The obstacle detection algorithm cor-
rectly detects (Figure 6b) and segments (Figure 6c) the
bush in the foreground and the background obstacles.
The texture classifier classifies the bush as a vegetation
class (green), which results in a low effective spring
contant for that  segment of the terrain. Therefore, even
though the bush is actually significantly taller than the
stone in Figure 5, the velocity control algorithm predicts
a small acceleration peak on the bush (red line plot in
Figure 6e), which is verified via the true vehicle dynam-
ics IMU measurements (green line plot in Figure 6e).  

6. Conclusions and Future Work
We have presented an integrated approach to obstacle

negotiation in sparsely vegetated terrain. This technique
represents a clear improvement with respect to traditional
obstacle avoidance procedures, and has the potential to
dramatically increase the efficiency of autonomous vehi-
cles in cross-country environments. While our prelimi-
nary experiments show very promising results, several
hurdles lay ahead and are the object of current research.

First, terrain cover classification based on color and tex-
ture needs to be made more robust to various environ-
mental conditions and more computationally efficient.
We are also considering different sensors, such as mul-
tispectral cameras in the thermal infrared domain and
lidars, to achieve terrain classification when color or
texture analysis fail. Second, pixel-wise classification, as
obtained by color or texture, should be combined with
explicit shape reasoning in order to correctly characterize
an obstacle. For example, an obstacle shaped like a thin
pole may correspond to a tree trunk and should not be
confused with a dry bush, even if the color may be simi-
lar in the two cases. Third, the relationship between ma-
terial type/ obstacle size and spring constant in our com-
pressibility model needs to be established through thor-
ough testing. In particular, we are exploring the possibil-
ity of online learning, where spring constants are refined
by comparing predicted and post-facto measured accel-
eration profiles.
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Figure 6: (a) Bush obstacle (b)detected obstacles (blue)
and rejected (red) (c) Segmented obstacle image (d)  tex-
ture classified image of obstacles within 15 metres (green-
vegetation) and (e) Predicted vs. actual absolute accel-
eration for bush obstacle


